What is an IEA?

An IEA is a synthesis and quantitative analysis of information on relevant physical, chemical, ecological and human processes in relation to specified ecosystem management objectives.

Identify multiple objectives, evaluate impacts of multiple strategies

Scoping

Scoping the IEA--Puget Sound Partnership's common vision

- 1. What is a 'healthy' Puget Sound?
- 2. Where are we now, and what are the major threats or impediments to achieving a 'healthy' state?
- 3. What strategies are needed to achieve our goals?
- 4. Where should we start?

Indicators and thresholds (What is healthy?)

Our quantitative approach for evaluating indicators for defining healthy

- Select attributes of interest
 - E.g., biomass distribution, trophic structure, resilience
- Use food web and /or ecosystem models to examine correlations between ecosystem attributes and indicators of those attributes

Approach

- We used 4 Ecopath with Ecosim (EwE)
 models to develop a database of values for
 marine ecosystem indicators and attributes.
- For each of the models, we simulated scenarios in which we altered mortality rates of a number of groups for the duration of 50 year simulations
- Examine the relationship between potential indicators and ecosystem attributes

Rockfish are broad indicators: attribute: trophic structure

Qualitative Approach to Indicators

- Identify, compile, and summarize former, current and proposed indicators for the Puget Sound ecosystem.
- Select and evaluate the most suitable ecosystem indicators based on established criteria.

Management Strategy Evaluation

Management Strategy Evaluation: 3 examples

- Watershed restoration effects on stream flows and salmon (multiple strategies)
- Harvest impacts on marine food webs
- Nearshore restoration impacts on ecosystem benefits (multiple benefits)

Multiple strategies: Habitat, hatchery and harvest actions modeled for salmon recovery

Evaluating recovery strategies with uncertain futures

Cumulative effects of restoration strategies: response of streams and salmon

Battin et al. 2007

Herring harvest impacts: food web context

Herring Fishing Level none

Management Strategy Evaluation: 3 examples

- Watershed restoration effects on stream flows and salmon (multiple strategies)
- Harvest impacts on marine food webs
- Nearshore restoration impacts on ecosystem benefits (multiple benefits)

What are the outcomes of nearshore degradation, protection or restoration for Puget Sound's ecosystem services?

Consequences of nearshore protection and restoration

Carbon sequestration

Marine harvest & food web support

Shoreline stabilization

Phyto-remediation

Eco-tourism, recreation

Anne Guerry, Mark Plummer

Linking ACT work & IEAs.....

- Building core process models (sea-floor mapping)
- Sorting through cumulative impacts and net ecosystem benefits (climate, invasives, marine debris, habitat loss, pollution, alternative energy, sustainable communities, etc.)
- Adapting (ocean awareness)

Risk Assessment and Ecosystem Status
(Current status? Major threats? How bad is it?)

Salmon viability

Ruckelshaus et al. 2006

Using conceptual models, spatial threat analyses, and functional relationships to identify threats, potential solutions

Threshold: drinking water risk to humans is greatest in areas with agricultural land uses, in well depths < 45 m in glacial moraine deposits

